命名实体识别与共指消解均依赖于对实体相邻文本信息的学习,本文提出一种基于混合神经网络的命名实体识别与共指消解联合模型,共用双向长短时记忆模型LSTM编码层对输入序列中每个词前后方向上下文信息进行编码,并通过训练学习得到上下文信息传递到前馈神经网络FFNN模型以提高共指消解精度,通过将领域文档及篇章语义向量加入FFNN,改进共指消解算法并优化共指消解模型.基于领域文本数据集进行联合模型训练,实验结果表明该联合模型可以有效地提高共指消解精度.