摘要

KNN算法因其易于理解、理论成熟等优点而被广泛应用于文本分类。由于KNN需遍历样本空间计算距离,当训练集样本规模较大或维数较高时,计算开销是巨大的。针对此问题,首先将遗传算法适应度函数设计部分与K-medoids算法思想相融合形成K-GA-medoids,其次将其与KNN相结合形成用于文本分类的算法框架,在分类过程中,采取先聚类,再分类的步骤,以实现对训练集样本的缩减,从而降低计算开销。实验表明,K-GA-medoids相较于传统K-medoids而言在聚类效果上有较为明显的提升,且将其与KNN相结合形成的文本分类算法框架与传统KNN算法相比在保证分类精确率的前提下,有效提升了文本分类的效率。

  • 单位
    中国电子科技集团公司第十研究所