摘要
药物研发过程中,化合物-蛋白质相互作用(compound-protein interaction,CPI)预测是发现苗头化合物、药物重定位等研究的关键技术手段。近年来,深度学习被广泛应用于CPI研究,加速了药物发现中CPI预测的发展。本文重点讨论基于特征的CPI预测模型,首先,介绍了CPI预测中常见的数据库、化合物和蛋白质的典型特征表示方法。根据建模中的关键问题,从多模态和注意力机制两个方面,对基于特征的CPI预测模型展开论述。在此基础上,选取其中12个模型,在3个经典数据集上评估了模型在分类任务和回归任务中的性能。本文总结当前该领域面临的挑战,对未来的发展方向进行展望,为CPI预测方法进一步研究提供思路。
- 单位