摘要
提出了一种将小波包变换和改进BP神经网络相结合的地铁轴承故障诊断模型。该模型采用小波包变换对采集到的原始振动信号进行分解和重构,提取能量特征向量,并采用一种改进的小波神经网络模型对地铁轴承进行故障诊断,引入动量因子优化BP神经网络梯度下降算法,以提高模型诊断精度和收敛速度。基于凯斯西储大学轴承故障实验中加速度传感器采集的数据,首先对其进行预处理,然后对神经网络进行训练,当训练误差达到目标精度时,利用该模型开展地铁轴承故障诊断仿真实验。结果表明:改进的小波神经网络模型可以快速、准确地诊断出地铁轴承的故障类型。
-
单位自动化学院; 南京理工大学