摘要
为有效利用高光谱影像与LiDAR数据的互补性信息,解决单一融合策略造成的场景解译地物边界不准确和分类精度低的问题,提出了一种光谱-空间-高度特征融合、并顾及场景地物类别共生特性的条件随机场分类方法。首先,对两种数据分别提取光谱及形态学特征,对特征集采用图模型进行特征融合,将特征输入概率支持向量机分类器,得到初始分类结果。然后,基于融合特征计算反映像素间类别本质差异的局部光谱-空间-高度协同的异质性值,并统计类别间的空间共生关系。最后,在条件随机场框架内,整合初始分类结果、局部异质性信息及类别共生关系,通过目标函数的迭代求解获得最终分类结果。通过将像素间的权重定义为对应像素位置融合特征的归一化欧式距离的单调减函数,对标记不同但特征差异较大的类别间给予较小的权重,以达到地物边界空间规整化的目的。通过对标记不同但共生概率较大的类别对给予较小的权重,达到保留空间关系稳定的类别对的目的。采用城区场景的美国休斯顿地区数据集和林区场景的中国广西高峰林场两组数据集对提出方法进行了验证。实验结果表明:休斯顿和高峰林场数据集精度分别达到94.00%和92.84%,分类结果的"胡椒盐"现象明显减少,证明了该方法的有效性。
- 单位