摘要
为了提高车牌识别的精确度,提出一种萤火虫反向传播(back propagation, BP)神经网络车牌识别算法.首先,采用原始图像的色相饱和度(hue saturation value, HSV)模式定位车牌并切割出字符,再提取字符的局部二值特征和像素统计特征作为BP神经网络的输入;然后,利用萤火虫算法优化BP神经网络的初始权值和阈值训练BP神经网络;最后,对萤火虫BP神经网络与原始BP神经网络算法进行对比分析.结果表明,萤火虫BP神经网络算法对字符的识别精度高于原始BP神经网络,该算法可用于车牌识别.
-
单位自动化学院; 淮阴工学院