摘要

以提高无线传感器网络中任务处理的能效为目标,提出了一种近似最优化的任务处理机制,无线传感器节点可根据任务缓存区的任务数量、信道条件,动态地实现任务向边缘服务器的卸载以及本地处理。将任务处理机制建模为马尔可夫决策过程,因为无线传感器节点不知道此过程的状态转移概率,所以采用A3C算法以实现在环境参数未知情况下的探索和学习,从而得到近似最优的任务处理策略。仿真结果表明,与其他机制相比,所提任务处理机制能提高节点能效,且收敛速度更快。