摘要

本文对二维Fisher-Kolmogorov-Petrovsky-Piscounov (Fisher-KPP)方程建立了一组加权的结构保持有限差分方法.运用能量分析法证明了当网格步长,参数α,p及θ满足一定条件时差分解具有保正性,保界性,保单调性等一系列数学性质,且在无穷范数意义下有O(τ+hx2+hy2)的收敛阶.然后,依据差分解的渐进展式,建立了一类Richardson外推法,获得了收敛阶为O(τ2+hx4+hy4)的外推解,提高了计算效率.最后数值实验表明,数值结果与理论结果相吻合.值得提及的是本文构造的Richardson外推法无需对时、空网格比增加额外的条件.

全文