摘要

在基坑施工过程中为保证地铁及其周边建筑物的安全,地铁基坑的变形预测变得越来越重要。ARMA模型作为一种时间序列分析模型,在地铁基坑监测序列中常常表现出较大的趋势项,降低了ARMA的预测精度。基于BP神经网络良好的拟合能力,提取基坑监测序列的趋势项,将剩余项建立ARMA模型,对基坑监测序列进行高精度的变形预测。改进ARMA模型提高了原有ARMA模型的预测精度,为地铁基坑的预测分析提供了较好的技术参考。