摘要

准确的光伏电站输出功率预测对于电力系统的稳定安全运行具有重要的意义。为充分挖掘区域内多个电站间的时空信息特征,提高区域内电站功率的预测精度,提出了一种基于图卷积和长短期记忆网络(graph convolutional network-long short-term memory,GCN-LSTM)的光伏电站功率预测方法。该方法首先采用K均值聚类算法(K-means clustering algorithm, Kmeans)将区域内电站的总功率划分3种不同的天气类型;然后,为预测区域内总功率,构建了一个假想电站,并利用图卷积网络(graph convolutional network,GCN)提取电站间的动态空间相关信息特征;最后,将GCN挖掘的信息构成时间序列作为长短期记忆网络(long short-term memory network,LSTM)的输入,提取电站的时间信息特征,从而对区域内的光伏功率进行预测。结果表明,该方法可充分挖掘电站间的时空相关信息,可较为准确地对光伏电站输出功率进行预测,能够为保障电力系统的稳定安全运行提供一定参考价值。