摘要
GNSS-InSAR数据融合进行监测地表形变是目前地表形变监测领域研究的热点问题,传统GNSS-InSAR数据融合方法融合简单、不能动态地反映地表形变特点,导致数据使用不充分、形变特征精度低等后果。提出了一种新的基于InSAR校正值和卡尔曼滤波的GNSS-InSAR融合方法。根据时间序列的GNSS观测值和InSAR校正观测值的时空相关性,通过卡尔曼滤波对两种数据进行融合,得到更精确的地表三维形变结果。利用2018年11月15日至2022年6月3日103景Sentinel-1A数据和同期13个GNSS点位数据进行处理,实验结果表明:校正后的InSAR观测值与GNSS观测值经卡尔曼滤波融合结果比未校正的InSAR观测值与GNSS观测值融合结果精度高45%,比InSAR观测值精度高57%。因此,基于InSAR校正值和卡尔曼滤波的GNSS-InSAR融合模型提高了InSAR变形监测的精度,拓展提升InSAR应用范围的广度和深度。
- 单位