将标签融入矩阵分解方法是当前推荐系统研究的热点。提出了一种基于标签自适应选择的矩阵分解推荐算法。首先,提出了标签-评分稀疏系数,较好地平衡了推荐过程中潜在特征与标签的使用问题。其次,利用标签的次数来计算标签向量,体现了标签的不同频率对不同物品的影响。最后,给出了算法的总体描述。实验结果表明,算法具有较高的推荐精度和较快的收敛速度。