摘要
目前识别发电单元运行状态的研究较少,数据来源以数据采集与监控系统为主,采集速度较慢。为此,提出了一种基于发电单元机端电气量数据并融合改进k近邻(KNN)算法的新能源发电单元状态识别方法,直接采集机端电气量数据用于快速判断发电单元状态。提出KNN算法的改进策略,克服了传统KNN算法准确度低、识别速度慢的缺点。利用电力系统分析综合程序获取用于状态识别的发电单元机端电气量数据,利用改进策略对数据进行预处理,并对比传统KNN算法、逐条使用改进策略的KNN算法对新能源发电单元状态识别的耗时与准确度。结果表明所提算法较传统算法的识别准确度和速度明显提升,能满足稳定控制过程中对新能源发电单元的状态感知需求。
-
单位国网电力科学研究院有限公司; 电气学院; 河海大学