摘要
目的 脑卒中发病征兆不明显,发病速度快且致死率高,目前医学领域的主要诊疗手段仍是针对脑卒中病时和病后,但在病前预测方面缺少有效办法。中医对于治未病等效果显著,其中望诊更是中医诊疗的重要方式。本文结合中医望诊,基于面部与手部图像提出了一种多分支深度特征融合的中医脑卒中辅助诊断方法。方法 针对不同部位图像,分别构建两部位的双分支特征提取模块,将面部和手部的重点区域作为主体分支提取主要特征。根据中医望诊在面部与手部诊疗的特点,进一步将眉心的纹理特征和掌心的颜色特征作为辅助信息提取辅助特征;在此基础上提出信息交互模块(information interaction module, IIM),将主要特征与辅助特征进行有效信息交互,从而辅助主体分支提取更有区别性的信息;最终将两部位的特征进行融合降维用于脑卒中辅助诊断。结果 本文将采集的3 011例面部和手部图像数据进行筛查扩充后作为实验数据集,并在不同评价指标下与当前主流的分类模型进行对比。实验结果表明,本文方法在准确性上达到了83.36%,相比ResNet-34、DenseNet121、VGG16(Visual Geometry Group 16-layer net)和InceptionV3等其他主流分类模型性能提高了3%■7%;在特异性和敏感性方面分别为82.47%和85.10%,其效果优于对比方法。结论 本文方法能够有效结合中医望诊的诊疗经验并通过传统面部和手部图像实现对脑卒中的有效预测,为中医望诊在脑卒中方面的客观化和便捷化发展提供了帮助。
- 单位