摘要
针对选择性激光烧结(SLS)中制件精度和工艺参数难以选择的问题以及BP神经网络本身缺陷,提出一种利用粒子群算法优化的BP神经网络建立SLS烧结件精度预测模型的方法。首先根据SLS成型工艺的特点,分析影响成型件精度的因素,通过实验获得不同激光功率、扫描速度、扫描间距和分层厚度条件下多组成型件精度数据,并采用多目标函数优化的单目标化思想优化目标函数,然后通过粒子群算法优化BP神经网络。用优化后的最优解作为BP神经网络算法的初始权值和阈值,利用MATLAB建立优化后的BP神经网络预测模型,对优化后的精度函数模型进行预测分析,并与传统BP神经网络获得的预测结果进行对比。结果表明:粒子群优化的神经网络模型具有良好的全局搜索能力和收敛性,精度预测更加准确,对SLS打印制件具有一定的指导作用。
- 单位