基于卷积特征聚合的细粒度图像检索方法

作者:苟光磊; 朱东旭; 杨雨
来源:计算机应用研究, 2022, 39(04): 1259-1264.
DOI:10.19734/j.issn.1001-3695.2021.07.0322

摘要

针对卷积神经网络(CNN)全连接层得到的是图像类别的全局语义信息,无法有效抑制背景噪声以及表示图像局部的细节信息,导致细粒度图像检索任务中负样本靠前的问题,提出了一种选择性加权来聚合卷积特征并利用k相互最近邻(k-reciprocal nearest neighbor,k-RNN)重排的图像检索方法。该方法主要是通过提取并筛选CNN最后一层特征来聚合形成单维全局特征向量,再引入k相互最近邻算法对检索出的结果进行重排。在细粒度基准数据集CUB-200-2011、室内场景数据集Indoor和普通类别数据集Caltech-101进行验证评估。实验结果表明该方法能够有效改善检索出负样本靠前的问题,相比SCDA方法,该方法检索精度及召回率有显著提升。

全文