摘要
针对叶轮转子碰摩响应以及周期解的分岔和稳定性开展研究。基于线性接触力和库伦摩擦力组成的叶尖碰摩力模型,建立了叶轮转子碰摩的动力学方程,通过数值计算给出了系统响应随转速变化的分岔图,发现在碰摩时系统出现了多种周期运动和混沌等响应形式,并有倍周期分岔、跳跃以及混沌吸引子的转换等现象发生。将同伦延拓理论和打靶法相结合,在庞加莱截面上通过切向预估和法向校正,形成了一种新的延续打靶法,将其应用于叶轮转子碰摩周期解计算和稳定性分析中,给出了碰摩周期响应的分岔图,发现随转速的变化,系统出现了大量局部稳定的周期解。基于周期解分岔图研究了系统进入和退出混沌的路径,发现系统进入混沌的路径主要是鞍结分岔和倍周期分岔,退出混沌的路径有倍周期分岔、Hopf分岔以及边界激变。
- 单位