摘要

时间信息贯穿于地质现象和事件产生、发展、消亡的整个过程中,反映了地质现象和事件的状态和演变过程。特别是,地质时间表达通常与成矿内在机制和时空演化规律有关。设计并实现了基于深度学习的通用时间和地质时间信息抽取方法。结合地质矿产文本中时间信息的描述特点,将时间信息划分为通用时间信息与地质时间信息两种类型,并对两种时间信息类型进行细分;基于自主研发的"交互式矿产信息标注软件",采用交叉验证及意见反馈模式构建了地质时间信息语料库;实现了基于双向长短期记忆神经网络—条件随机场(BiLSTM-CRF)的时间信息抽取方法;并与主流的卷积神经网络(CNN)和条件随机场(CRF)模型的抽取结果进行了比较。实验结果表明,基于双向长短期记忆神经网络—条件随机场的时间信息抽取效果最好,对总体时间抽取的F1值达到95.49%,较好地解决了地质文本中时间信息的规范化表达和结构化抽取问题。