摘要

提出了一种融合梯度搜索法、繁殖法并结合前N个粒子历史最优位置的改进自适应粒子群优化算法。算法选用混沌惯性权重,每个粒子速度和位置的更新不仅考虑自身历史最优和全局最优位置,还受其他粒子历史最优位置的影响,且其影响程度的权重随迭代次数自适应变化;同时粒子位置随迭代次数以线性递增的概率进行负梯度方向更新;当粒子更新停滞时,对可能处于局部最优位置的部分粒子进行杂交。仿真实验结果表明,该算法比其他相关算法具有更好的收敛速度和收敛精度。

  • 单位
    汽车车身先进设计制造国家重点实验室; 湖南大学