摘要

针对直接法DSO(Direct Sparse Odometry)存在的明显的尺度不确定性问题,对尺度不确定性给系统定位精度带来的影响进行分析,提出将对单幅图像进行深度估计的深度学习网络和DSO相结合的融合算法;针对DSO后端耗时问题,提出运用预处理共轭梯度(Preconditioned Conjugate gradient,PCG)算法优化后端求解部分。在KITTI公开数据集上与ORB-SLAM2、DSO、LDSO进行对比测试,系统的定位精度得到显著提高。