基于冠层光谱的水稻穗颈瘟病害程度预测模型

作者:韩雨; 刘焕军; 张新乐*; 于滋洋; 孟祥添; 孔繁昌; 宋少忠; 韩晶
来源:光谱学与光谱分析, 2021, 41(04): 1220-1226.

摘要

对水稻稻瘟病病害程度的定量预测是精准防控的关键,田间冠层尺度的研究可为高光谱传感器提供理论基础。以受穗颈瘟胁迫的水稻为研究对象,采用SVC HR768i型光谱辐射仪在大田中获取灌浆期两个不同时间段的水稻冠层光谱反射率,以水稻发病株数百分比作为病害严重程度指标。冠层光谱数据采用九点平滑预处理,并重采样为1nm间隔,计算植被指数;经过去包络线和一阶导数光谱变换,提取高光谱特征参数。分析不同时间段的光谱变换、植被指数、高光谱特征参数与病害程度的相关关系,构建基于植被指数、高光谱特征参数的穗颈瘟病害程度随机森林预测模型,并对比分析两个单时期预测模型异同,优选共用输入量,构建出两时期混合数据的病害程度预测模型。结果表明:(1)原始光谱曲线经去包络线处理可有效增强与病害程度相关的光谱信息,近红外波段(960~1 050和1 150~1 280nm)的相关系数在0.80以上;(2)高光谱特征参数与病害程度相关性分析中,去包络线吸收谷参数相关系数高于其他参数,吸收谷V3(910~1 100nm)、吸收谷V4(1 100~1 300nm)中面积(A3和A4)、深度(DP3和DP4)、斜率(SL4和SR4)的相关系数在0.74以上;(3)去包络线吸收谷参数结合随机森林模型预测穗颈瘟病害程度在单时期及两时期混合数据中均表现最好。灌浆期后期数据预测效果最佳,验证集决定系数R2=0.91,均方根误差RMSE=0.02;(4)两时期混合数据预测精度处于两个单时期预测精度之间,验证集决定系数R2=0.85、均方根误差RMSE=0.03。研究成果揭示了灌浆期不同时间段水稻穗颈瘟光谱响应机制,表明去包络线吸收谷参数结合随机森林模型预测稻瘟病的实用性,可为田间水稻穗颈瘟病害程度进行快速、精确、无损地定量预测,为精准施药提供理论依据,并对未来航空、航天遥感的病害监测提供一定的技术支持。