摘要
为提升短期电力负荷预测的精度,着眼于特征组合的构建,提出了一种基于Holt-Winters指数平滑的特征组合(FCHW),并结合时间卷积网络(TCN)构建了FCHW-TCN负荷预测框架。首先,应用Holt-Winters指数平滑进行负荷序列预测,得到与负荷序列相关的级别分量和季节性分量。通过将上述分量用作输入特征,并与常规特征(历史负荷、日期)构成特征组合,构建了FCHW;其次,选择TCN作为预测模型,以FCHW作为TCN输入,搭建了FCHW-TCN预测框架;最后,采用2个不同负荷数据集和多个预测模型对FCHW和FCHW-TCN进行验证。结果表明,FCHW有助于模型预测精度的提升;与其他预测模型相比,FCHW-TCN预测框架有着最高的预测精度,具有优越的预测能力。