摘要

个人信用评估是现代商业银行个人信用管理的核心.本文将数据挖掘中的随机森林算法(Random Forests,RF)运用到现代个人信用评估模型中,实现了逐步优化和评估.实证分析的结果证明,随机森林模型具有较高的精确性和泛化能力,能够克服噪声数据的影响.通过对各特征变量的重要性评分,得到贷款期限和总额等对风险预测的准确率具有显著作用.