摘要
面向图片与视频攻击下的人脸活体检测任务,提出了一种差分量化相邻局部二值模式(DQ_CoALBP)算子,综合不同方向上的图像局部中心点与周围点之间的差值,同时为了更加充分地描述人脸的彩色纹理信息,在颜色空间通道上将该算子与局部相位量化(LPQ)直方图特征相融合,并利用支持向量机(SVM)分类器实现人脸反欺诈判别。在公开CASIA-FASD与Replay-Attack数据集上的实验结果表明,DQ_CoALBP算子的表现均优于LBP、LPQ、CoALBP与DQ_LBP四种算子。采用YCbCr颜色空间在融合DQ_CoALBP与LPQ算子时,CASIA-FASD数据集上的等错误率(EER)和半错误率(HTER)分别降至2.5%和3.7%,Replay-Attack 数据集上实现了无差错检测,优于一些深度卷积神经网络模型。
- 单位