摘要
针对四旋翼无人机姿态控制中模型不完整、部分参数和扰动不确定的问题,提出了一种基于神经网络的自适应控制方法,采用RBF神经网络对无人机姿态动力学模型中不确定和扰动部分进行学习,设计了以类反步法为基础,包含反馈控制和神经网络控制的自适应控制器,实现了对未知动态的准确逼近,解决了传统控制方法中过于依赖精确模型的问题。同时设计了神经网络的权值自适应律,实现了控制过程中的在线学习和调整,并且通过李雅普诺夫方法证明了闭环系统的稳定性。仿真结果表明,在存在较大扰动的情况下,上述控制器可得到很好的控制效果,可以实现误差的快速收敛,具有较好的鲁棒性和自适应性。
- 单位