多变量时间序列各变量间依赖性较强,数据变化趋势不明显,预测难度高.传统研究采用带门控机制的循环神经网络及变体进行预测,但序列间存在相互依赖关系,突变数据段建模预测不精确.基于信息熵,本文提出一种新的改进门控权重单元,利用信息熵技术量化数据序列的变化程度,动态调整权重矩阵刻画数据的变化趋势.基于4个公开数据集分别进行实验,实验结果表明新模型比传统循环神经网络模型具有更好的预测性能.