摘要

把三重态激子(T1)与单重态激子(S1)能量接近的典型热辅助延迟荧光材料4CzTPN-Ph作为掺杂客体,以具有不同T1能量的材料分别作为掺杂主体、空穴传输层和电子传输层,制备了一系列基于4CzTPN-Ph掺杂的有机发光二极管,并测量了这些器件在室温下的磁电致发光效应(Magneto-Electroluminescence, MEL)和磁电导效应(Magneto-Conductance, MC),以及器件随温度变化的MEL和MC.实验发现:室温下,当空穴传输层、电子传输层和掺杂主体分别选用T1能量高低不同的材料时,各器件的MEL和MC在低磁场范围(|B|<20 mT)分别呈现出不同变化规律的线型,具体表现为当器件各功能层同时都选用较高T1能量的材料时,器件MEL的幅度在低磁场范围内表现出随注入电流的减小而变小的反常行为,并出现了由正到负的转变, MC曲线则表现出符号为负且其幅度随磁场的增加而变大的RISC属性;而当器件的空穴传输层、电子传输层或掺杂主体材料的三重态能量较低时, MEL和MC表现出减弱的RISC过程;并且,当电子传输层或掺杂主体选用三重态能量与4CzTPN-Ph接近的Alq3时, MEL和MC直接表现出类似未掺杂的Alq3荧光器件的线型.分析器件的能量传输过程可知, T1能量高低不同的空穴传输层、电子传输层或掺杂主体材料对4CzTPN-Ph三重态能量的束缚能力不同,造成各器件中T1激子不同的传输通道和能量损失,从而使各器件在低磁场范围出现了不同的MEL和MC线型.本研究不仅丰富了能量传输对4CzTPN-Ph发光器件内部机制的认识,同时也对TADF器件中三重态激子的可控应用提供了一定的理论参考.