摘要

无拉力弹性地基上矩形薄板的屈曲/后屈曲问题是板壳力学中一类重要课题,在工程中有着大量应用。因涉及接触非线性,目前主要采用数值方法对该类问题进行求解,发展具有重要基准价值的解析方法是当前面临的一项挑战。针对上述问题,本文将板划分为若干包含强制边界条件的板,形成子问题,在辛空间下利用分离变量与辛本征展开对子问题进行解析求解,通过子问题边界处的连续条件确定板与地基的接触状态;通过迭代求解上述过程,获得子问题划分的收敛结果,并得到最终屈曲载荷及模态。结果表明,无拉力弹性地基与Winkler地基上板的屈曲行为存在显著差异,且无拉力弹性地基的刚度对板的屈曲载荷与屈曲模态均有重要影响。在此基础上,结合Koiter摄动法与辛方法,对无拉力弹性地基上矩形板的后屈曲问题进行求解,获得板的后屈曲平衡路径。所得到的屈曲与后屈曲分析结果均与有限元计算结果吻合良好,确认了本文结果的正确性。由于本文方法数学推导严格,求解效率高,因此不仅为研究无拉力弹性地基上矩形薄板的屈曲/后屈曲行为提供了一种有价值的理论工具,更有望拓展至更多复杂板壳力学问题的求解。