摘要

考虑特征数据的多响应logit决策模型常用于个性化推荐问题,尤其在考虑参数矩阵的低秩结构时该方法表现较好。近年来有较多理论和算法上的进展,但是该决策模型中的参数估计在高维情形下仍然具有挑战性。因此,本文引入了基于特征数据的惩罚似然方法,进而还原顾客、产品关于推荐结果的稀疏结构。提出的方法同时考虑低秩和稀疏结构,以降低模型复杂度,同时提升参数估计和模型预测的精度。新算法稀疏因子梯度下降(SFGD)用于参数矩阵的估计,该方法有较高的可解释性以及计算效率。作为一阶的方法,SFGD不用考虑Hessian矩阵的计算,在高维情形下有较好表现。模拟研究表明,SFGD在参数估计、稀疏还原以及算法平均regret上均优于现有方法。通过广告行为数据分析来验证了方法的有效性。