摘要
为提高母线负荷预测精度,提出一种基于多级负荷智能协调的母线短期负荷预测方法。首先对预测母线负荷序列进行历史负荷与当前负荷的相关性分析,再进行系统空间母线与预测母线的相关性分析,根据两次相关性分析结果合理设置算例,得到预测网络的最优输入方式,然后利用长短时记忆网络(LSTM)建立母线短期负荷预测模型,最后运用吉林省某地区的实测数据将提出模型与反向传播(BP)神经网络和支持向量机(SVM)的预测结果进行对比分析,验证本文提出的预测模型具有更高的精确度。
-
单位东北电力大学; 国网吉林省电力有限公司电力科学研究院