摘要
基于离散粒子群优化算法(DPSO)与基于多尺度小波核函数的核极限学习机(MKELM),提出了一种新型的DPSOMKELM算法用于风机齿轮箱故障诊断。首先,针对PSO算法过早收敛,易陷入局部最优的缺点,提出改进DPSO算法,在迭代过程中,通过调节权重因子和学习因子,降低算法过早收敛概率,减少优化结果陷入局部最优状态的可能。其次,提出一种基于多尺度小波核函数的核极限学习机(MKELM),利用不同尺度小波核函数叠加构造核极限学习机。最后将两种算法有机结合,提出一种新型的DPSO-MKELM算法,用于风力轴承的故障诊断。通过实际数据的算例验证,新算法具有更高的分类精度和较快的收敛速度。
-
单位国网安徽省电力有限公司; 南京工程学院