摘要

在不确定数据流聚类算法的研究中,位置不确定性是一种新的不确定数据类型.已有的不确定数据模型不能很好地描述和处理位置不确定数据.鉴于此,在提出基于联系数的位置不确定数据模型、联系距离函数、微簇密度可达性等主要概念的基础上,提出了一种联系数表达的位置不确定数据流聚类算法——UCNStream.数据流聚类算法采用在线/离线两级处理框架,使用基于密度峰值思想的初始化策略,定义了新的可动态维护的微簇聚类特征向量.利用衰减函数和微簇删除机制对微簇进行在线维护,准确地反映了数据流的演化过程.最后,分析了算法的计算复杂性,并通过对实际数据集上的实验与几种优秀的聚类算法进行了比较,实验结果表明,UCNStream算法具有较高的聚类精度和处理效率.