摘要
目的 解决大面积破损难以修复且修复过程中感受野、特征空间信息利用不足,导致修复后的孔洞区域与背景之间出现结构、纹理、风格不一致的问题。方法 基于傅里叶卷积和多特征调制的修复网络FFC-MFMGAN,傅里叶卷积在网络的浅层便具有较大的感受野,尤其是在宽掩码时能够跳过掩码区域,捕获到有效特征,多特征调制生成网络能够分别利用完整区域的信息和随机样式操纵,增强与未受损区域的语义连贯性,以及大空洞率下修复的多样性。结果 在Place 2数据集上,将文中方法与其他图像修复方法进行了对比实验,经过测试,各类指标均得到明显改善,峰值信噪比提高了1.4%,结构相似性提高了4.5%,平均绝对误差降低了12.6%,基于学习的感知图像块相似性降低了9.1%。结论 FFC-MFMGAN网络能够较好地修复大面积不规则孔洞,同时增强修复图像的全局结构性和清晰度,对实际包装印刷图像的缺陷修复也有一定参考价值。
- 单位