摘要

电力变压器是电力系统中最重要的电力设备之一,其运行可靠性关系到电力系统的安全稳定运行,因此变压器故障诊断一直备受研究人员关注。基于油箱表面振动信号的机械故障诊断方法,因其测量系统与变压器没有直接电气连接,抗干扰能力强而受到广泛研究。传统的振动信号分析法一般分析变压器油箱表面的混叠信号,无法有效分别评估绕组与铁心的机械状态,因此,开展变压器油箱表面振动信号分离技术的研究具有重要意义。提出基于BP神经网络的变压器油箱表面振动信号分离技术,分离得到的铁心振动信号波形相似系数平均值为0.813,绕组振动信号波形相似系数平均值为0.834,效果理想,为有效评估绕组和铁心机械状态提供了重要的技术手段。