摘要
[目的/意义]在新冠疫情背景下,提出多任务环境下融合迁移学习的疫情新闻要素识别方法,向公众提供面向应急事件的知识服务。[方法/过程]首先,通过多任务识别新闻要素:基于规则识别时间要素;并融合模型迁移与深度学习方法,构建跨领域的要素识别模型。在此基础上,构建疫情新闻要素的关联数据,以知识图谱的方式展示各要素之间的关联关系。[结果/结论]实验结果表明,除药物外的新闻要素的识别F1值均在80%以上,说明融合迁移学习的模型能够取得较优的识别效果;并且,关联数据知识图谱能够直观显示新闻的重点要素及新闻的主要内容。综上所述,提出的方法能够有效识别新冠疫情新闻要素,从而帮助新闻读者准确、高效地获取新闻中的重要信息。
- 单位