摘要
近年来,卷积神经网络(CNN)已广泛应用于合成孔径雷达(SAR)目标识别。由于SAR目标的训练数据集通常较小,基于CNN的SAR图像目标识别容易产生过拟合问题。生成对抗网络(GAN)是一种无监督训练网络,通过生成器和鉴别器两者之间的博弈,使生成的图像难以被鉴别器鉴别出真假。本文提出一种基于改进的卷积神经网络(ICNN)和改进的生成对抗网络(IGAN)的SAR目标识别方法,即先用训练样本对IGAN进行无监督预训练,再用训练好的IGAN鉴别器参数初始化ICNN,然后用训练样本对ICNN微调,最后用训练好的ICNN对测试样本进行分类。MSTAR实验结果表明,提出的方法不仅能够在训练样本数降至原样本数30%的情况下获得高达96.37%的识别率,而且该方法比直接采用ICNN的方法具有更强的抗噪声能力。
- 单位