摘要

B2B电商平台的用户都具有企业特征,传统的协同过滤算法以用户-商品偏好矩阵为主,难以体现用户的企业特征。在传统协同过滤算法的基础上增加企业-类别矩阵,改进形成双偏好矩阵协同过滤算法,搭建具有企业数据特征的B2B电商平台智能推荐引擎,应用于电商大数据分析平台,并在铁路某电商平台上进行实践应用,算法响应时间为毫秒级。为了证明算法的实用性,分别在准确率、召回率、覆盖率、新颖度等方面与传统的协同过滤算法、KNN算法进行对比,均具有优势,尤其是在不活跃用户的准确性方面提升超过10%。

  • 单位
    中国铁道科学研究院集团有限公司