摘要

为了实现苹果园的快速精确测产,结合可见光与热红外图像,提出了一种基于机器学习和Hough变换的苹果树测产新方法。以成熟期苹果树为研究对象,利用热成像相机同步采集可见光与热红外图像数据,通过仿射变换模型实现了可见光与热红外温度图像的配准;利用温度信息与RGB颜色波段作为4个分类特征,采用支持向量机,完成分类与后验概率的计算;采用Hough变换实现了图像中苹果的识别标注和计数;通过线性回归模型进行了苹果测产估计,并进行了交叉验证。在光照条件非均一而使苹果颜色存在差异的情况下,经过试验验证,与人工记录的测产数据相比,该文提出的新方法苹果测产的准确率达到80%以上,为果园的科学管理提供了有力的技术支持。