摘要
不同的裂缝类型关系到不同养护策略。SVM在解决小样本、非线性、高维度问题时具有较大优势,通过采用不同的SVM分类方法和核函数对常用的数据集中的样本进行分类结果对比,选取了RBF核函数和One-against-All的分类方法。但分类结果仍然满足不了路面养护要求。由于Adaboost选择不同的样本进行训练,改变了训练样本的数据分布。每次迭代都会计算得到一个分类效果最佳的弱分类器及其所在总体分类器中的权重。随着迭代次数的增加,最终由弱分类器迭代生成的强分类器的分类误差最小。提出了SVM-Adaboost分类器动态的对SVM参数进行优化。试验结果表明,应用基于SVM-Adaboost的裂缝分类算法对指定样本进行测试,横向裂缝准确率87.48%,纵向裂缝准确率95.37%,网状裂缝准确率94.9%,块状裂缝准确率89.7%。该方法可以提高组合分类器整体的分类精度。
-
单位交通运输部科学研究院; 交通运输部公路科学研究院