摘要

针对使用传统预测方式,对空气中PM2.5的质量浓度进行预测,难以获得准确的结果这样的问题,提出了一种基于误差反向传播神经网络的PM2.5预测方法。将宝鸡市空气质量监测站的历史监测数据作为分析对象,进行PM2.5小时浓度预测建模。BP神经网络能够使用梯度下降法不断对网络连接权值和阈值进行修正,针对PM2.5质量浓度预测这种非线性的问题具备较为精准的分析处理能力。仿真结果证明,使用BP神经网络对PM2.5质量浓度进行预测,其结果具备一定的有效性和精准度。

全文