摘要
联邦学习的提出解决了在隐私保护下完成多客户合作的机器学习问题,而激励客户参与联邦学习是模型性能提高的一个重要前提。针对客户数据非独立同分布特征会导致联邦学习性能下降这一问题,考虑预算约束下,设计了基于单位数据成本和数据特征—EMD距离的客户端筛选方式,提出一种有效的联邦学习激励机制(EMD-FLIM),从理论上证明了机制具有诚实性,即每个客户会诚实披露数据成本和数据分布信息,同时机制具有预算可行性、个人理性及计算有效性。实验结果显示,提出的激励机制在数据分布不平衡情况下模型精度至少能达到数据量最优选择(不考虑激励)下的94%以上,与不考虑数据分布特征的激励机制相比较,模型精度平均可提高5%以上。
- 单位