摘要

由于旋转机械的振动信号具有非平稳、复杂多样、数据量大的特点,传统的方法难以较好地实现旋转机械故障诊断。近年来,基于深度学习的故障诊断算法发展迅速,其中,卷积神经网络(Convolutional Neural Network,CNN)由于可实现自动提取特征、运算效率高等优点受到广泛关注,但在识别准确率等方面仍然存在部分问题。为实现多传感器监测状态下的旋转机械故障诊断,在经典卷积神经网络结构的基础上,引入了多通道数据融合处理、空洞卷积层、批标准化处理、PReLU激活函数、全局平均池化层等改进方法,构造了一种新型的、高效的空洞卷积神经网络(Atrous Convolution-Convolutional Neural Network,AC-CNN),并基于该模型进行了旋转机械故障诊断实验。实验结果表明,提出的故障诊断模型分类准确率可达99%以上,对比其他神经网络方法具有明显优势。