摘要

红外图像便于识别热源目标,可见光图像包含丰富的纹理信息。红外和可见光的融合图像兼顾了两个波段传感器的优势,可以清楚地显示热源目标及其背景,在军事侦察、安防监控、遥感监测等领域有着广泛的应用,已成为图像融合领域的重点研究方向。近年来,国内外学者对红外和可见光图像融合算法开展了大量研究。文中首先对现有的图像融合算法进行了详细介绍,包括多尺度变换、稀疏表示的传统图像处理方法和基于CNN,GAN,AE这3种常见网络结构的深度学习图像融合算法。接着综述了融合图像的评价方法,对常见的多种客观评价指标进行了归类分析。然后开展对比实验,对各种方法进行了主观评价和定量分析,指出不同方法的优势和不足。最后,对红外和可见光图像融合技术的未来发展趋势进行展望。

全文