摘要

结球甘蓝是一种富含碳水化合物的常见蔬菜,可溶性糖含量是决定其品质的重要参数。可溶性糖易溶于水,是蔬菜和水果口味的有效调节剂。作为碳水化合物,可溶性糖由三种元素C,H和O组成,其分子吸收光谱主要由被检测材料的分子中C—H,O—H和C—O等基团的组合频率吸收和倍频吸收组成,包含丰富的有机物信息。因此,采用近红外光谱和化学计量学方法,探索结球甘蓝可溶性糖含量的快速检测方法。用德国布鲁克公司的MATRIX-Ⅰ型傅里叶变换近红外光谱仪采集161份结球甘蓝样本光谱数据。波数范围:12 8004 000cm-1(7802 500nm)。蒽酮比色法测量样本的可溶性糖。综合应用马氏距离法(MD)和蒙特卡洛交叉验证法(MCCV)剔除异常样本,采用Kennard-Stone(K-S)法将样本按照给定比例划分为校正集和验证集。分别使用Savitzky-Golay卷积平滑(S-G),一阶导数(FD),二阶导数(SD),多元散射校正(MSC)和变量标准化(SNV)及它们的组合共12种方法对样本进行光谱预处理,获得最佳预处理方法,提高光谱数据的信噪比。采用竞争性自适应重加权采样法(CARS)筛选偏最小二乘回归(PLS)模型中回归系数绝对值大的波数点,去掉回归系数绝对值小的波数点,以有效选择与所测特性值相关的最优波数组合,获得具有良好鲁棒性和强预测能力的校正模型。使用模型决定系数R2、交互验证均方根误差(RMSECV)、预测均方根误差(RMSEP)作为模型精度评价指标。根据蒙特卡洛交叉验证法和马氏距离剔除异常样本的原理,共剔除10个光谱或者化学值异常的样本。最终参与建模分析的样本个数为151。异常样本剔除后,通过K-S法将样本按照3∶1被分成校正集(110个样本)和验证集(41个样本)。使用原始光谱数据,预处理后的光谱数据和对应于优选波数的光谱数据,建立PLS模型。结果表明,利用MSC+FD光谱预处理可以提高建模精度,校正集R2从处理前的0.68增长到0.93,MSC+FD是本研究中理想的光谱数据预处理方法。利用CARS法共优选了84个建模波数。在12 00010 000cm-1波数区域内,有O—H键2级和C—H键3级倍频伸缩振动吸收,此区域主要的背景信息为水和其他含氢基团,在此区域内共包含了36个选定的波数。在8 5006 000cm-1区域,存在糖类和水的O—H键的1级倍频伸缩振动吸收,葡萄糖的O—H键的1级倍频伸缩振动吸收,该区域是包含反映可溶性糖成分的主要光谱区间,背景影响较小,CARS方法在此区域共选择了15个建模波数。5 8004 000cm-1区域与12 00010 000cm-1区域相似,包含的选定波数多,CARS方法在此区域选择了33个建模波数。利用CARS对参与建模的波数进行优选,减少了无关信息,降低了模型的复杂度,选择的波数不但引入了表征待测组分的光谱,同时还引入了代表背景信息的光谱,使得校正模型适应性增强。建立了结球甘蓝可溶性糖的全谱PLS模型,根据CARS波数优选结果,建立了结球甘蓝可溶性糖的CARS-PLS模型。对于全谱PLS定量模型,校正集的决定系数R2为0.93,RMSECV为0.157 2%,RMSEP为0.132 8%。对于CARS-PLS模型,校正集的决定系数R2为0.96,RMSECV为0.076 8%,RMSEP为0.059 4%。数据表明,两种模型具有相当的R2,但CARS-PLS模型的RMSECV是全谱PLS模型的1/2。RMSEP也接近1/2,CARS-PLS模型比全谱PLS定量模型所用建模变量少,模型得到简化,精度更优。用CARS-PLS模型对验证集41个样本进行预测,预测集决定系数R2为0.86,预测标准误差为0.059 4%。提供了一种工作效率较高的结球甘蓝质量无损检测方法。