摘要

星/机载光学遥感图像视场广阔、场景复杂,且受岸边建筑、碎云影响易产生大量与舰船目标高相似虚警,给舰船检测带来极大干扰,传统海洋舰船检测算法难以有效提取利于检测的鉴别性特征,导致舰船检测率低、虚警率高。鉴于此,本文从低虚警、低漏检角度,提出一种结合层次化搜索与视觉残差网络的光学舰船目标检测方法。首先基于纹理积分图分割出海陆区域;其次,结合多尺度局部结构特征提取目标候选区域;然后,通过基于多维度视觉特征的层次化策略进行初级虚警剔除;最后,基于视觉残差网络对疑似候选区进行精细化虚警剔除,得到最终检测结果。基于GF2光学遥感数据对本文所提算法进行测试验证,本文算法综合检测率92.0%,虚警率12.58%,平均处理时间0.5s,检测效果好、效率高,对各种场景的适应性好,可实现复杂环境光学舰船的准确、高效检测定位。

  • 单位
    北京跟踪与通信技术研究所; 北京市遥感信息研究所