摘要
在人工神经网络水文模型的研究中,往往加入前期径流以提高模型的预报精度.针对由此带来的问题,通过耦合总径流线性响应模型,建立一种基于人工神经网络的实时预报模型.通过引入总径流线性响应模型的模拟径流作为模型输入,模型的模拟模式能够提供较长的预见期,同时加入误差校正模型的实时预报模式也能够取得较高的模型精度.采用3个不同流域的流量资料对模型进行率定与校核.结果表明,模型能够取得较高的预报精度,显示了良好的适用性.
-
单位水资源与水电工程科学国家重点实验室; 武汉大学