摘要
估算能量状态是电池管理系统的主要功能之一,因为对于电动汽车而言能量状态是预测续航里程、能量管理分配和优化以及实现电池组均衡的的重要参数。传统的功率积分方法,其准确性依赖于较高精度的电压、电流传感器,因而成本高。因此,基于改进的戴维南电路模型,将扩展卡尔曼滤波法(EKF)用来估算电池的剩余能量状态和荷电状态,且使用遗忘递推最小二乘法在线实时辨识模型参数。结果表明,此方法具有较好的估算精度,在复杂动态电流测试工况估算误差可以保持在2%以内,而且能量状态(SOE)比荷电状态(SOC)更适合反映能量的变化。
- 单位