摘要

为提高光伏功率预测精度以减少光伏接入对电网运行的不利影响,提出一种基于K-means++和LSTM网络的光伏功率预测方法。首先,利用改进的K-means方法对历史数据进行聚类;然后,建立基于LSTM神经网络的预测模型,用聚类后数据集对提出的预测模型进行了训练和测试,为提高模型的预测精度,进行了一系列的仿真和参数选择;最后,将方法和单一LSTM网络和BP神经网络进行了比较。结果表明中,方法具有较好的准确性和通用性。