摘要
针对KNN算法在中文文本分类时计算开销大的问题,在已有改进算法的基础上进行了更深入的研究,提出改进的基于中心向量KNN算法.算法首先引入基于密度的思想对训练样本进行调整,同时计算各类别的类中心向量.在保证类中心向量准确性的前提条件下,使分类阶段的复杂计算提前到分类器的训练过程中.实验结果表明,该算法在不损失精确度的情况下,提高了分类实时性.
- 单位
针对KNN算法在中文文本分类时计算开销大的问题,在已有改进算法的基础上进行了更深入的研究,提出改进的基于中心向量KNN算法.算法首先引入基于密度的思想对训练样本进行调整,同时计算各类别的类中心向量.在保证类中心向量准确性的前提条件下,使分类阶段的复杂计算提前到分类器的训练过程中.实验结果表明,该算法在不损失精确度的情况下,提高了分类实时性.