摘要
为了有效抑制变换域通信网络干扰信号,改善信噪比,研究了基于深度卷积神经网络的变换域通信网络抗干扰优化算法。应用傅里叶变换方法将信号从时域转换到频域,并以傅里叶变换通信信号获得的参数为依据构建干扰信号模型;嵌入干扰信号模型以形成接收信号,然后对接收信号进行处理并存储在干扰数据库中,利用深度卷积神经网络完成干扰信号的特征学习与干扰估计,并根据干扰估计结果,在接收信号中去除干扰信号,完成变换域通信网络抗干扰优化。实验结果表明:该算法可有效完成变换域通信网络抗干扰优化,优化后通信信号的信噪比改善性能与误码性能均较佳,输出的通信信号几乎无干扰信号存在。
- 单位